Abstract
Utilizing cutting-edge supervised classification and regression algorithms, three web-based tools have been developed for predicting stability changes upon single residue substitutions in proteins with known native structures. Trained models classify independent mutant test sets with accuracies ranging from 87 to 94%. Attributes representing each mutant protein are based on a computational mutagenesis methodology relying on a four-body statistical potential, illustrating a novel integration of both energy-based and machine learning approaches. The servers are written in PHP and hosted on a Linux platform, and they can be freely accessed online along with detailed data sets, documentation and performance results at http://proteins.gmu.edu/automute.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.