Abstract
As a thin-film chip method, reverse dot blot hybridization (RDBH) has been employed to detect hazardous substances, but an automatic RDBH instrument with low workload, high accuracy and stability is still urgently needed. This paper presents our newly-developed auto-microfluidic thin-film chip (AMTC) method for multiplex screening of genetically modified (GM) maize. With specific DNA probes for genetically modified (GM) maize being immobilized on a square nylon thin-film, it was placed into a micro-reaction cell of the AMTC device. Then biotin-labeled PCR products with target DNA fragments for template amplification were added to the micro-reaction cell using a microfluidic system. When the PCR products passed the square nylon thin-film, the target DNA fragments were captured by the complementary action of DNA, where the signal was visualized with streptavidin link-coupled alkaline phosphatase color development kit. The sensitivity of GM maize detection reached 0.1% quality percentage and its stability and consistency could satisfy the requirements for practical applications. Performance advantages of the ATMC are manifold, being embodied in aspects such as easy and straightforward operation, low costs and less workload.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.