Abstract

and Association rule mining are two basic tasks of Data Mining. Classification rules mining finds rules that partition the data into disjoint sets. This paper is based on MrCAR (Multi-relational Classification Algorithm) and Kohonen's Self-Organizing Maps (SOM) approach. SOM is a class of typical artificial neural networks (ANN) with supervised learning which has been widely used in classification tasks. For small disjunction mining, we collocate with a new auto level threshold generation method in our algorithm to solve the problem of unclassified data of MrCAR. So, we optimize the classification rate of MrCAR with SOM network and improve the efficiency of classification. This approach is highly effective for classification of various kinds of databases and has better average classification accuracy in comparison with MrCAR. Finally the results convincingly demonstrated that our proposed algorithm has high accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.