Abstract

Pressure transient response (PTR) of horizontal well in naturally fractured reservoirs (NFR) has a particular characteristic shape. This PTR is often used to estimate parameters of NFRs and detect their wellbore and boundary regimes. Interporosity flow coefficient (λ) and storativity ratio (ω) are two important parameters of the NFR that often estimated by matching process on the PTR. Since the matching techniques’ results are not often unique, in this study, the multi-output least squares support vector regression (MLS-SVR) is employed for simultaneous estimation of λ and ω. A databank of 500 PTRs for horizontal wells in naturally fractured reservoirs is generated by the finite element method, converted to the pressure derivative (PD) curves, and then used to develop and evaluate this auto-characterization paradigm. The predictive accuracy of the model is checked and validated by both smooth and noisy PTRs. The proposed model predicts ω and λ with overall absolute average relative deviations (AARD) of 0.186% and 3.754%, respectively. The correlation coefficients (R2) of 1 and 0.99992 are obtained for the prediction of ω and λ, respectively. The Leverage outlier detection technique justified that only less than 6% of the predictions are within the suspect region. This MLS-SVR model can be simply integrated with commercial pressure transient analysis (PTA) packages for accurate prediction of ω and λ even from the noisy PTRs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.