Abstract

Breast cancer is recognized as a prominent cause of cancer-related mortality among women globally, emphasizing the critical need for early diagnosis resulting improvement in survival rates. Current breast cancer diagnostic procedures depend on manual assessments of pathological images by medical professionals. However, in remote or underserved regions, the scarcity of expert healthcare resources often compromised the diagnostic accuracy. Machine learning holds great promise for early detection, yet existing breast cancer screening algorithms are frequently characterized by significant computational demands, rendering them unsuitable for deployment on low-processing-power mobile devices. In this paper, a real-time automated system "Auto-BCS" is introduced that significantly enhances the efficiency of early breast cancer screening. The system is structured into three distinct phases. In the initial phase, images undergo a pre-processing stage aimed at noise reduction. Subsequently, feature extraction is carried out using a lightweight and optimized deep learning model followed by extreme gradient boosting classifier, strategically employed to optimize the overall performance and prevent overfitting in the deep learning model. The system's performance is gauged through essential metrics, including accuracy, precision, recall, F1 score, and inference time. Comparative evaluations against state-of-the-art algorithms affirm that Auto-BCS outperforms existing models, excelling in both efficiency and processing speed. Computational efficiency is prioritized by Auto-BCS, making it particularly adaptable to low-processing-power mobile devices. Comparative assessments confirm the superior performance of Auto-BCS, signifying its potential to advance breast cancer screening technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call