Abstract

'Social brain' circuitry has recently been implicated in processing slow, gentle touch targeting a class of slow-conducting, unmyelinated nerves, CT afferents, which are present only in the hairy skin of mammals. Given the importance of such 'affective touch' in social relationships, the current functional magnetic resonance imaging (fMRI) study aimed to replicate the finding of 'social brain' involvement in processing CT-targeted touch and to examine the relationship between the neural response and individuals' social abilities. During an fMRI scan, 19 healthy adults received alternating blocks of slow (CT-optimal) and fast (non-optimal) brushing to the forearm. Relative to fast touch, the slow touch activated contralateral insula, superior temporal sulcus (STS), medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC) and amygdala. Connectivity analyses revealed co-activation of the mPFC, insula and amygdala during slow touch. Additionally, participants' autistic traits negatively correlated with the response to slow touch in the OFC and STS. The current study replicates and extends findings of the involvement of a network of 'social brain' regions in processing CT-targeted affective touch, emphasizing the multimodal nature of this system. Variability in the brain response to such touch illustrates a tight coupling of social behavior and social brain function in typical adults.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call