Abstract

In light of the new DSM-5 autism spectrum disorders diagnosis in which the autism spectrum reflects a group of neurodevelopmental disorders existing on a continuum from mild to severe expression of autistic traits, and recent empirical findings showing a continuous distribution of autistic traits in the general population, our voxel based morphometry study compares normal individuals with high autistic traits to normal individuals with low autistic traits. We hypothesize that normal individuals with high autistic traits in terms of empathizing and systemizing [high systemizing (HS)/low empathizing (LE)] share brain irregularities with individuals that fall within the clinical autism spectrum disorder. We find differences in several social brain network areas between our groups. Specifically, we find increased gray matter (GM) volume in the orbitofrontal cortex, the cuneus, the hippocampus and parahippocampus and reduced GM volume in the inferior temporal cortex, the insula, and the amygdala in our HS/LE individuals relative to our HE/LS (low autistic traits in terms of empathizing and systemizing) individuals.

Highlights

  • According to defenders of the continuum view (e.g., Widiger and Trull, 2007; Livesly, 2012), the endophenotypes that give rise to a given psychiatric disorder should be understood as extreme instances of normal cognitive-emotional and/or personality traits that exist along a continuum

  • The goal of our study is to examine whether normal individuals with autism spectrum disorders (ASDs) traits in terms of empathizing and systemizing (HS/low empathizing (LE)) share certain brain irregularities with individuals that fall within the clinical ASD group

  • The brain analysis of modulated data shows an increase in gray matter (GM) volume in the parahippocampus, the hippocampus, the cuneus and the orbitofrontal cortex, and a decrease in GM volume in the inferior temporal cortex, the insula and the amygdala in the high systemizing (HS)/LE participants relative to the HE/LS participants

Read more

Summary

Introduction

According to defenders of the continuum view (e.g., Widiger and Trull, 2007; Livesly, 2012), the endophenotypes that give rise to a given psychiatric disorder should be understood as extreme instances of normal cognitive-emotional and/or personality traits that exist along a continuum. The new DSM-5 continues to separate normal from abnormal traits in a discontinuous way, the new autism spectrum disorders (ASDs) diagnosis does reflect a group of neurodevelopmental disorders that exist on a continuum from mild to severe expression, involving impairments in the social-communicative domain (e.g., deficits in social-emotional reciprocity) and behavioral domain (e.g., fixated interests and repetitive behaviors). Accumulating evidence places autistic traits on a continuum in the general population, with clinical ASD representing the extreme end of this continuous distribution (Whitehouse et al, 2011). Accumulating evidence places autistic traits on a continuum in the general population, with clinical ASD representing the extreme end of this continuous distribution (Whitehouse et al, 2011). Baron-Cohen (2008)

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call