Abstract
Autism Spectrum Illness (ASD), a evolution of the brain disorder, is commonly related with sensory difficulties, such as excessive or insufficient sensitivity to sounds, scents, or touch. Autism Spectrum Disorder (ASD) is evolving at a faster rate than ever before. By screening tests autism detection is very expensive and time consuming. With the advancement of Deep Learning (DL),autism can be predicted from a young age.In this paper we are using Convolutional Neural Network (CNN) with Transfer Learning (TL) models to classify the disease and we will suggest the precautions if it is detected as autism. Here we consider the Autism Master Dataset (AMD) from kaggle.com website, which contains two classes (Autism, Non_Autism). By using this models we are obtaining good accuracy
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Online and Biomedical Engineering (iJOE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.