Abstract

Telomeres are nucleoprotein complexes at the ends of chromosomes and are indispensable for the protection and lengthening of terminal DNA. Despite the evolutionarily conserved roles of telomeres, the telomeric double-strand DNA (dsDNA)-binding proteins have evolved rapidly. Here, we identified double-strand telomeric DNA-binding proteins (DTN-1 and DTN-2) in Caenorhabditis elegans as non-canonical telomeric dsDNA-binding proteins. DTN-1 and DTN-2 are paralogous proteins that have three putative MYB-like DNA-binding domains and bind to telomeric dsDNA in a sequence-specific manner. DTN-1 and DTN-2 form complexes with the single-strand telomeric DNA-binding proteins POT-1 and POT-2 and constitutively localize to telomeres. The dtn-1 and dtn-2 genes function redundantly, and their simultaneous deletion results in progressive germline mortality, which accompanies telomere hyper-elongation and chromosomal bridges. Our study suggests that DTN-1 and DTN-2 are core shelterin components in C. elegans telomeres that act as negative regulators of telomere length and are essential for germline immortality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.