Abstract

Entry and extrusion of cations are essential processes in living cells. In alkaliphilic prokaryotes, high external pH activates voltage-gated sodium channels (Nav), which allows Na+ to enter and be used as substrate for cation/proton antiporters responsible for cytoplasmic pH homeostasis. Here, we describe a new member of the prokaryotic voltage-gated Na+ channel family (NsvBa; Non-selective voltage-gated, Bacillus alcalophilus) that is nonselective among Na+, Ca2+ and K+ ions. Mutations in NsvBa can convert the nonselective filter into one that discriminates for Na+ or divalent cations. Gain-of-function experiments demonstrate the portability of ion selectivity with filter mutations to other Bacillus Nav channels. Increasing pH and temperature shifts their activation threshold towards their native resting membrane potential. Furthermore, we find drugs that target Bacillus Nav channels also block the growth of the bacteria. This work identifies some of the adaptations to achieve ion discrimination and gating in Bacillus Nav channels.DOI: http://dx.doi.org/10.7554/eLife.04387.001

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.