Abstract
Plasma cells (PCs) are essential for protection from infection, and at the origin of incurable cancers. Current studies do not circumvent the limitations of removing PCs from their microenvironment and confound formation and maintenance. Also, the investigation of PC population dynamics has mostly relied on nucleotide analog incorporation that does not label quiescent cells, a property of most PCs. The main impediment is the lack of tools to perform specific genetic manipulation in vivo. Here we characterize a genetic tool (JchaincreERT2) in the mouse that permits first-ever specific genetic manipulation in PCs in vivo, across immunoglobulin isotypes. Using this tool, we found that splenic and bone marrow PC numbers remained constant over-time with the decay in genetically labeled PCs being compensated by unlabeled PCs, supporting homeostatic population turnover in these tissues. The JchaincreERT2 tool paves the way for an in-depth mechanistic understanding of PC biology and pathology in vivo, in their microenvironment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.