Abstract

The structure of fitness landscapes is critical for understanding adaptive protein evolution. Previous empirical studies on fitness landscapes were confined to either the neighborhood around the wild type sequence, involving mostly single and double mutants, or a combinatorially complete subgraph involving only two amino acids at each site. In reality, the dimensionality of protein sequence space is higher (20L) and there may be higher-order interactions among more than two sites. Here we experimentally characterized the fitness landscape of four sites in protein GB1, containing 204 = 160,000 variants. We found that while reciprocal sign epistasis blocked many direct paths of adaptation, such evolutionary traps could be circumvented by indirect paths through genotype space involving gain and subsequent loss of mutations. These indirect paths alleviate the constraint on adaptive protein evolution, suggesting that the heretofore neglected dimensions of sequence space may change our views on how proteins evolve.DOI: http://dx.doi.org/10.7554/eLife.16965.001

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.