Abstract

Silicon microstrip detectors were used to build an experimental X-ray imaging setup. The detectors were used in an “edge-on” geometry, with the photons hitting the detector from the side. Efficiencies up to 90% at 20 keV photon energy could be achieved. The system was tested using a standard mammographic phantom. Images of modeled microcalcifications with various diameters down to 200 μm and images of modeled tumors were made. Spatial resolution of the system was studied on an X-ray test pattern with frequency of line-pairs between 1 and 10l p/mm. An appropriate scanning step combined with knowledge of the system's line spread function was used to deconvolve the measured image and increase the spatial resolution. In this way the effective pixel size was reduced as much as for a factor of ≈3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.