Abstract
GTP (2 mM) promotes protein synthesis in rabbit reticulocyte lysates in which protein chain initiation is inhibited by the activation of specific adenosine 3′:5′ cyclic monophosphate independent protein kinases in: 1) heme deficiency; or 2) in hemin-supplemented lysates by the addition of the purified heme-regulated protein kinase (HRI); or 3) oxidized glutathione; or 4) by low levels of double stranded RNA. The molecular basis for the promotion of protein synthesis by GTP under these various conditions was investigated by examining the in, situ state of eIF-2 phosphorylation. The results show that GTP (2 mM) blocks eIF-2 phosphorylation and also promotes the dephosphorylation of phosphorylated eIF-2. These findings suggest that GTP restores protein synthesis by a common mechanism that involves the relief of eIF-2 from phosphorylation. The nonphosphorylated eIF-2 is, therefore, available for the maintenance and the restoration of protin chain initiation cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.