Abstract

As offshore wind farm development expands, accurate wind resource forecasting over the ocean is needed. One important yet relatively unexplored aspect of offshore wind resource assessment is the role of sea surface temperature (SST). Models are generally forced with reanalysis data sets, which employ daily SST products. Compared with observations, significant variations in SSTs that occur on finer time scales are often not captured. Consequently, shorter-lived events such as sea breezes and low-level jets (among others), which are influenced by SSTs, may not be correctly represented in model results. The use of hourly SST products may improve the forecasting of these events. In this study, we examine the sensitivity of model output from the Weather Research and Forecasting Model (WRF) 4.2.1 to two different SST products—a daily, spatially coarser resolution data set (the Operational Sea Surface Temperature and Ice Analysis, or OSTIA), and an hourly, spatially finer resolution product (SSTs from the Geostationary Operational Environmental Satellite 16, or GOES-16). We find that in the Mid-Atlantic, although OSTIA SSTs validate better against in situ observations taken via a buoy array in the area, the two products result in comparable hub-height wind characterization performance on monthly time scales. Additionally, during flagged events that show statistically significant wind speed deviations between the two simulations, the GOES-16-forced simulation outperforms that forced by OSTIA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call