Abstract
BackgroundBrazil has consolidated a relevant position in the world market, being the largest exporter and second producer of beef. Genetics, feeding system, geographic origin and climate influence the multielement profile of beef. The feasibility of combining classification algorithms with major and trace elements was evaluated as a tool for authentication of beef cuts. MethodsAnimals of Angus, Nelore and Wagyu crossbreeds, raised in a vertically integrated system, were sampled at the slaughterhouse for chuck steak, rump cap and sirloin steak. Supervised learning algorithms i.e. Classification and Regression Tree (CART), Multilayer Perceptron (MLP), Naïve Bayes (NB), Random Forest (RF) and Sequential Minimal Optimization (SMO) were used to build classification models based on the multielement profile of beef determined by neutron activation analysis. ResultsBr, Co, Cs, Fe, K, Na, Rb, Se and Zn were determined in the beef samples. The classification accuracy values obtained for the beef cuts were 96% (MLP), 95% (SMO), 91% (RF), 86% (NB) and 70% (CART). ConclusionThe Multilayer Perceptron algorithm provided the best classification performance towards authentication of beef cuts on basis of major and trace element mass fractions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.