Abstract

Parameterization of complex surfaces constitutes a major means of visualizing highly convoluted geometric structures as well as other properties associated with the surface. It also enables users with the ability to navigate, orient, and focus on regions of interest within a global view and overcome the occlusions to inner concavities. In this paper, we propose a novel area-preserving surface parameterization method which is rigorous in theory, moderate in computation, yet easily extendable to surfaces of non-disc and closed-boundary topologies. Starting from the distortion induced by an initial parameterization, an area restoring diffeomorphic flow is constructed as a Lie advection of differential 2-forms along the manifold, which yields equality of the area elements between the domain and the original surface at its final state. Existence and uniqueness of result are assured through an analytical derivation. Based upon a triangulated surface representation, we also present an efficient algorithm in line with discrete differential modeling. As an exemplar application, the utilization of this method for the effective visualization of brain cortical imaging modalities is presented. Compared with conformal methods, our method can reveal more subtle surface patterns in a quantitative manner. It, therefore, provides a competitive alternative to the existing parameterization techniques for better surface-based analysis in various scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.