Abstract
Protein silencing represents an essential tool in biomedical research. Targeted protein degradation (TPD) strategies exemplified by PROTACs are rapidly emerging as modalities in drug discovery. However, the scope of current TPD techniques is limited because many intracellular materials are not substrates of proteasomal clearance. Here, we described a novel targeted-clearance strategy (autophagy-targeting chimera [AUTAC]) that contains a degradation tag (guanine derivatives) and a warhead to provide target specificity. As expected from the substrate scope of autophagy, AUTAC degraded fragmented mitochondria as well as proteins. Mitochondria-targeted AUTAC accelerated both the removal of dysfunctional fragmented mitochondria and the biogenesis of functionally normal mitochondria in patient-derived fibroblast cells. Cytoprotective effects against acute mitochondrial injuries were also seen. Canonical autophagy is viewed as a nonselective bulk decomposition system, and none of the available autophagy-inducing agents exhibit useful cargo selectivity. With its target specificity, AUTAC provides a new modality for research on autophagy-based drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.