Abstract

ABSTRACT In this paper, the austenite grain growth behaviour of 12Cr ultra-super-critical (USC) rotor steel was investigated by a series of heat treatments. The heat treatments at heating temperatures of 900°C–1250°C and holding time of 1 h–20 h were conducted in an electric box-type heating furnace. Experimental results showed that the sizes of austenite grain were affected by heating temperatures and holding time, and heating temperature was the dominant factor. In addition, the grain growth rate changed significantly before and after the turning points of 1050°C and 1250°C. Meanwhile, an austenite grain growth mathematical model was established at different heating temperature stages, and possession of the capability to accurately predict austenite grain size was confirmed. Furthermore, the microstructure of austenite grain in the heating process was observed by optical microscope (OM) and transmission electron microscopy (TEM), which revealed the mechanism of austenite grain growth. Analysis indicated that the change of quantity of precipitate particles with increasing heating temperature was the main reason for the difference in austenite grain growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call