Abstract

In this study, austenite formation from hot-rolled (HR) and cold-rolled (CR) ferrite-pearlite structures in a plain low-carbon steel was investigated using dilation data and microstructural analysis. Different stages of microstructural evolution during heating of the HR and CR samples were investigated. These stages include austenite formation from pearlite colonies, ferrite-to-austenite transformation, and final carbide dissolution. In the CR samples, recrystallization of deformed ferrite and spheroidization of pearlite lamellae before transformation were evident at low heating rates. An increase in heating rate resulted in a delay in spheroidization of cementite lamellae and in recrystallization of ferrite grains in the CR steel. Furthermore, a morphological transition is observed during austenitization in both HR and CR samples with increasing heating rate. In HR samples, a change from blocky austenite grains to a fine network of these grains along ferrite grain boundaries occurs. In the CR samples, austenite formation changes from a random spatial distribution to a banded morphology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.