Abstract
AbstractIn this paper we demonstrate the accuracy and robustness of combining the advection upwind splitting method (AUSM), specifically AUSM+-UP, with high-order upwind-biased interpolation procedures, the weighted essentially non-oscillatory (WENO-JS) scheme and its variations, and the monotonicity preserving (MP) scheme, for solving the Euler equations. MP is found to be more effective than the three WENO variations studied. AUSM+-UP is also shown to be free of the so-called “carbuncle” phenomenon with the high-order interpolation. The characteristic variables are preferred for interpolation after comparing the results using primitive and conservative variables, even though they require additional matrix-vector operations. Results using the Roe flux with an entropy fix and the Lax-Friedrichs approximate Riemann solvers are also included for comparison. In addition, four reflective boundary condition implementations are compared for their effects on residual convergence and solution accuracy. Finally, a measure for quantifying the efficiency of obtaining high order solutions is proposed; the measure reveals that a maximum return is reached after which no improvement in accuracy is possible for a given grid size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.