Abstract
ABSTRACTWe study Auslander–Reiten components of an artin algebra with bounded short cycles, namely, there exists a bound for the depths of maps appearing on short cycles of non-zero non-invertible maps between modules in the given component. First, we give a number of combinatorial characterizations of almost acyclic Auslander–Reiten components. Then, we shall show that an Auslander–Reiten component with bounded short cycles is obtained, roughly speaking, by gluing the connecting components of finitely many tilted quotient algebras. In particular, the number of such components is finite and each of them is almost acyclic with only finitely many DTr-orbits. As an application, we show that an artin algebra is representation-finite if and only if its module category has bounded short cycles. This includes a well known result of Ringel’s, saying that a representation-directed algebra is representation-finite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.