Abstract

Given a compactpp-adic Lie group over an arbitrary base field we prove that its distribution algebra is Fréchet-Stein with Auslander regular Banach algebras whose global dimensions are bounded above by the dimension of the group. As an application, we show that nonzero coadmissible modules coming from smooth or, more generally, U(g)U(\mathfrak {g})-finite representations have a maximal grade number (codimension) equal to the dimension of the group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.