Abstract

The spatial configuration of the auroral electrojets during the growth phase of classical substorms is investigated. Electrojet intensities are determined from measurements of the convection electric field and calculated height integrated conductivity. Both the westward and eastward electrojets decrease in latitudinal width towards ∼21–23 MLT where they both are terminated. The latitudinal widths of the eastward electrojet as a function of MLT, however, show significant scatter. This scatter is shown to be effectively minimized by organizing the data by the local time distance to the future optical onset location rather than using magnetic local time. We find that the future optical onset will be located in the region of overlapping eastward and westward electrojets. The fact that the future onset location better organizes the data suggests that during the growth phase the magnetosphere is organizing itself for an onset at an already determined MLT as seen at ionospheric altitudes. Neither the IMF By nor IMF clockangle provide a simple explanation of the variation in the onset location.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.