Abstract
AbstractAuroral beads are spatially wavy forms routinely seen before the onset of auroral substorms and are closely related to the onset‐related instabilities. To date, the acceleration mechanism of electrons that create auroral beads is not fully determined. Here, we present a fortuitous event when the Van Allen Probe A (RBSP‐A) was in magnetic conjunction with auroral beads. RBSP‐A observed Alfvén waves, locally generated kinetic Alfvén waves (KAWs) and Alfvénic accelerated electrons at several 100 eV. The Alfvén waves and KAWs carried sufficient Poynting flux to power visible aurora and may control the beads' motion. These observations and previous simulations support that the Alfvénic acceleration is the acceleration mechanism of the auroral beads. Specifically, KAWs are generated around the equator and accelerate local cold electrons to several 100 eV. The waves are suggested to propagate to both hemispheres and accelerate electrons to several keV, which directly account for the auroral beads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.