Abstract

Auroral arcs are typically described in terms of an upward field‐aligned current (FAC) sheet above the arc, connected by ionospheric Pedersen current to a downward FAC sheet near the arc. On the basis of data measured by the FAST spacecraft, conjugate with ground optical observations, we present first a wide and stable winter evening arc, where this standard model does not apply. The arc is observed in the Harang region during the growth phase of a modest substorm, poleward of the convection reversal (CR) boundary. Although the magnetic field data suggest the typical configuration, the two FAC sheets appear to be decoupled near the satellite footprint: the upward FAC is fed by the westward electrojet (WEJ), while the downward FAC feeds the eastward electrojet (EEJ). The examination of the arc by the newly developed ALADYN technique confirms this peculiar current topology. For comparison, we apply ALADYN also to a second evening arc, located within the Harang region equatorward from the CR. The arc is confirmed to have the standard configuration, consistent with a former study, but substantial FAC‐EJ coupling is inferred in the auroral oval both poleward and equatorward of the arc. A key element for the topology of the current closure is the westward component of the electric field, which influences the relative location of the CR with respect to the large‐scale FAC reversal (FR) boundary. As proved by tests on synthetic data, a westward component of the electric field pushes the CR toward the FR, preventing thus the standard FAC closure, while the conductance and FAC pattern shape the CR profile. Since a westward electric field is often measured in the Harang region, the FAC‐EJ coupling is expected to be an essential ingredient there. This has important implications for the current closure in the equatorial magnetosphere and for the auroral current circuit in the WEJ region, closely related to the substorm process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.