Abstract

Proper assembly of mitotic spindles requires Hice1, a spindle-associated protein. Hice1 possesses direct microtubule binding activity at its N-terminal region and contributes to intraspindle microtubule nucleation as a subunit of the Augmin complex. However, whether microtubule binding activity of Hice1 is modulated by mitotic regulators remains unexplored. Here, we found that Aurora-A kinase, a major mitotic kinase, specifically binds to and phosphorylates Hice1. We identified four serine/threonine clusters on Hice1 that can be phosphorylated by Aurora-A in vitro. Of the four clusters, the Ser/Thr-17-21 cluster was the most critical for bipolar spindle assembly, whereas other phospho-deficient point mutants had a minimal effect on spindle assembly. Immunostaining with a phospho-Ser-19/20 phospho-specific antibody revealed that phosphorylated Hice1 primarily localizes to spindle poles during prophase to metaphase but gradually diminishes after anaphase. Consistently, the phospho-mimic 17-21E mutant reduced microtubule binding activity in vitro and diminished localization to spindles in vivo. Furthermore, expression of the 17-21E mutant led to decreased association of Fam29a, an Augmin component, with spindles. On the other hand, expression of the phospho-deficient 17-21A mutant permitted intraspindle nucleation but delayed the separation of early mitotic spindle poles and the timely mitotic progression. Taken together, these results suggest that Aurora-A modulates the microtubule binding activity of Hice1 in a spatiotemporal manner for proper bipolar spindle assembly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.