Abstract

Aurora kinase B (AurkB) is a serine/threonine protein kinase with a well-characterised role in orchestrating cell division and cytokinesis, and is prominently expressed in healthy proliferating and cancerous cells. However, the role of AurkB in differentiated and non-dividing cells has not been extensively explored. Previously, we have described a significant upregulation of AurkB expression in cultured cortical neurons following an experimental axonal transection. This is somewhat surprising, as AurkB expression is generally associated only with dividing cells Frangini et al. (Mol Cell 51:647-661, 2013); Hegarat et al. (J Cell Biol 195:1103-1113, 2011); Lu et al. (J Biol Chem 283:31785-31790, 2008); Trakala et al. (Cell Cycle 12:1030-1041, 2014). Herein, we present the first description of a role for AurkB in terminally differentiated neurons. AurkB was prominently expressed within post-mitotic neurons of the zebrafish brain and spinal cord. The expression of AurkB varied during the development of the zebrafish spinal motor neurons. Utilising pharmacological and genetic manipulation to impair AurkB activity resulted in truncation and aberrant motor axon morphology, while overexpression of AurkB resulted in extended axonal outgrowth. Further pharmacological inhibition of AurkB activity in regenerating axons delayed their recovery following UV laser-mediated injury. Collectively, these results suggest a hitherto unreported role of AurkB in regulating neuronal development and axonal outgrowth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.