Abstract

The human MDR1 gene encodes the multidrug transporter P-glycoprotein (Pgp). Although the MDR2/Pgp shares about 80% identity at the amino acid level with the MDRI/Pgp, the MDR2/Pgp cannot act as a multidrug transporter. We examined the drug sensitivity of Saccharomyces cerevisiae expressing either the human MDR1/Pgp or MDR2/Pgp. The human MDR1/Pgp conferred about 4-fold resistance to aureobasidin A, a cyclic depsipeptide antifungal antibiotic, on the drug-sensitive yeast strains. Interestingly the human MDR2/Pgp also conferred about 2.5-fold resistance to aureobasidin A. The resistance to aureobasidin A conferred by the MDR2/Pgp as well as by the MDR1/Pgp was overcome by vinblastine, verapamil, and cyclosporin A, depending on their concentrations, but not by colchicine. Aureobasidin A probably interacts directly with Pgps, because it overcame multidrug resistance of human cells and inhibited azidopine photoaffinity labeling of MDRI/Pgp in human cell membranes. These results suggest the possibility that the human MDR1 and MDR2/Pgps have conserved domain(s) for drug recognition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call