Abstract

For the electrodeposition, the conductivity and lattice structure of substrate is important to the morphology and lattice of the deposited material. In this study, gold-platinum (AuPt) nanopartical was deposited on nickel foam (NF) based on the lattice induced orientation of the Ni substrate, and the obtained AuPt/NF was applied to construct electrochemical impedimetric immunosensor for procalcitonin (PCT) detection. As a new immunosensor matrix, NF with higher electrical conductance, flexibility and specific surface area, which can improve the plasticity, sensitivity and universality of the immunoelectrode. Due to the lattice matching between Au and Ni, ultrathin AuPt nanolayer with good biocompatibility and large surface area can be modified on the NF surface, which can bind more biomolecules and amplifies the change of impedance signal. Based on the synergistic effect between AuPt and NF, PCT detection based on this electrochemical impedimetric immunosensor with a wide linear range (0.2 pg mL−1 to 20 ng mL−1) and low detection limit (0.11 pg mL−1). In addition, this impedimetric immunosensor exhibits high recovery in the PCT detection of serum samples. This work provides a new thought and method for the construction of electrochemical immunosensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.