Abstract

AuPd bimetallic nanocatalysts exhibit superior catalytic performance in the cleavage of carbon-halogen bonds (C-X) in the hazardous halogenated pollutants. A better understanding of how Au atoms promote the reactivity of Pd sites rather than vaguely interpreting as bimetallic effect and determining which type of Pd sites are necessary for these reactions are crucial factors for the design of atomically precise nanocatalysts that make full use of both the Pd and Au atoms. Herein, we systematically manipulated the coordination number of Pd-Pd, d-orbital occupation state, and the Au-Pd interface of the Pd reactive centers and studied the structure-activity relationship of Au-Pd in the catalyzed cleavage of C-X bonds. It is revealed that Au enhanced the activity of Pd atoms primarily by increasing the occupation state of Pd d-orbitals. Meanwhile, among the Pd sites formed on the Au surface, five to seven contiguous Pd atoms, three or four adjacent Pd atoms, and isolated Pd atoms were found to be the most active in the cleavage of C-Cl, C-Br, and C-I bonds, respectively. Besides, neighboring Au atoms directly contribute to the weakening of the C-Br/C-I bond. This work provides new insight into the rational design of bimetallic metal catalysts with specific catalytic properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call