Abstract

The innovative PD-1/PD-L1 pathway strategy is gaining significant traction in cancer therapeutics. However, fluctuating response rates of 20-40% to PD-1/PD-L1 inhibitors, coupled with the risk of hyperprogression after immunotherapy, underscore the need for accurate patient selection and the identification of more beneficiaries. Molecular imaging, specifically near-infrared (NIR) fluorescence imaging, is a valuable alternative for real-time, noninvasive visualization of dynamic PD-L1 expression in vivo. This research introduces AUNP-12, a novel PD-L1-targeting peptide antagonist conjugated with Cy5.5 and CH1055 for first (NIR-I) and second near-infrared (NIR-II) imaging. These probes have proven to be effective in mapping PD-L1 expression across various mouse tumor models, offering insights into tumor-immune interactions. This study highlights the potential of AUNP-12-Cy5.5 and AUNP-12-CH1055 for guiding clinical immunotherapy through precise patient stratification and dynamic monitoring, supporting the shift toward molecular imaging for personalized cancer care.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call