Abstract

In this paper, we shall firstly illustrate why we should discuss the Aumann type set-valued Lebesgue integral of a set-valued stochastic process with respect to time t under the condition that the set-valued stochastic process takes nonempty compact subset of d-dimensional Euclidean space. After recalling some basic results about set-valued stochastic processes, we shall secondly prove that the Aumann type set-valued Lebesgue integral of a set-valued stochastic process above is a set-valued stochastic process. Finally we shall give the representation theorem, and prove an important inequality of the Aumann type set-valued Lebesgue integrals of set-valued stochastic processes with respect to t, which are useful to study set-valued stochastic differential inclusions with applications in finance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.