Abstract

Precise vehicle positioning is a key element for the development of Cooperative Intelligent Transport Systems (C-ITS). In this context, we present a distributed processing technique to augment the performance of conventional Global Navigation Satellite Systems (GNSS) exploiting Vehicle-to-anything (V2X) communication systems. We propose a method, referred to as Implicit Cooperative Positioning with Data Association (ICP-DA), where the connected vehicles detect a set of passive features in the driving environment, solve the association task by pairing them with on-board sensor measurements and cooperatively localize the features to enhance the GNSS accuracy. We adopt a belief propagation algorithm to distribute the processing over the network, and solve both the data association and localization problems locally at vehicles. Numerical results on realistic traffic networks show that the ICP-DA method is able to significantly outperform the conventional GNSS. In particular, the analysis on a real urban road infrastructure highlights the robustness of the proposed method in real-life cases where the interactions among vehicles evolve over space and time according to traffic regulation mechanisms. Performances are investigated both in conventional traffic-light regulated scenarios and self-regulated environments (as representative of future automated driving scenarios) where vehicles autonomously cross the intersections taking gap-availability decisions for avoiding collisions. The analysis shows how the mutual coordination in platoons of vehicles eases the cooperation process and increases the positioning performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.