Abstract

The effects of heat generation/absorption and thermal radiation on MHD natural convective flow inside the I-shaped cavity saturated with ferrofluid have been investigated in this study. The Cobalt-kerosene type of ferrofluid has been used with solid volume fractions (Φ = 0∼0.06). The penalty finite element technique with Galerkin weighted method has been used to attain the solution of highly non-linear governing PDE’s. Simulations are carried out in terms of stream lines, heat-lines, isotherms contours and local Nusselt number for wide range of physical flow parameters including thermal radiation (NR = 0∼10), heat generation/absorption (ξ = −5∼5), Hartmann (Ha = 0∼10), Rayleigh (Ra = 103∼106), Prandtl (Pr = 6.83), Eckert (Ec = 10−5) and Magnetic number (Mn = 5 * 102). The obtained results show that increasing the concentration of solid volume friction (Φ) from 0 (pure base fluid) to 0.06 has improved heat transfer by 28% and velocity profiles by 23%. Increasing the Rayleigh number from 103 to 106 has significantly improved the total heat transfer rate along the bottom wall from 1.12 to 8.842. It is also noted that the intensity of circulation cells of streamlines and headlines has decreased with increasing Hartmann number (Ha).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call