Abstract

In forestry, common garden experiments traditionally require manual measurements and visual inspections. Unmanned aircraft systems (UAS) are a newer method of monitoring plants that is potentially more efficient than traditional techniques. This study had two objectives: to assess the size and mortality of Pinus strobiformis Engelm. seedlings using UAS and to predict the second-year seedling size using manual measurements from the first year and from UAS size estimates. Raised boxes containing 150 seedlings were surveyed twice, one year apart, using multispectral UAS. Seedling heights and diameters at root collar (DRC) were measured manually in both years. We found that size estimates made using a vegetation mask were suitable predictors for size, while spectral indices were not. Furthermore, we provided evidence that inclusion of UAS size estimates as predictors improves the fit of the models. Our study suggests that common variables used in forest monitoring are not necessarily best suited for seedlings. Therefore, we created a new variable, called the longitudinal area (height × DRC), which proved to be a significant predictor for both height and DRC. Finally, we demonstrate that seedling mortality can be effectively measured from remotely sensed data, which is useful for common garden and regeneration studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.