Abstract
Short-term cepstral features have long been chosen as standard features for speaker recognition thanks to their relevance and effectiveness. In contrast, discriminative features, calculated by a multi-layer perceptron (MLP) from much longer stretches of time, have been gradually adopted in automatic speech recognition (ASR). It has been shown that augmenting short-term cepstral features with long-term MLP (multi-layer perceptron) features makes it possible to improve significantly the performance of ASR. In this work, we investigate the possibility of augmenting short-term cepstral features with MLP features in order to improve the performance of text-independent speaker verification. We show, that, even though augmenting cepstral features with MLP features does not directly improve speaker verification performance, reducing the dimension of the augmented features, using principal component analysis (PCA), makes it possible to reduce, relatively, around 12% of the equal error rate (EER). Experiments are performed on telephone data of the 2008 NIST SRE (speaker recognition evaluation) database. Index Terms: Speaker verification, multi-layer perceptron (MLP), principal component analysis (PCA), NIST SRE 2008, GMM-UBM
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.