Abstract
Our primary goal here is to demonstrate that innovative analytics of aneurismal velocities, named velocity-informatics, enhances intracranial aneurysm (IA) rupture status prediction. 3D computer models were generated using imaging data from 112 subjects harboring anterior IAs (4-25mm; 44 ruptured and 68 unruptured). Computational fluid dynamics simulations and geometrical analyses were performed. Then, computed 3D velocity vector fields within the IA dome were processed for velocity-informatics. Four machine learning methods (support vector machine, random forest, generalized linear model, and GLM with Lasso or elastic net regularization) were employed to assess the merits of the proposed velocity-informatics. All 4 ML methods consistently showed that, with velocity-informatics metrics, the area under the curve and prediction accuracy both improved by approximately 0.03. Overall, with velocity-informatics, the support vector machine's prediction was most promising: an AUC of 0.86 and total accuracy of 77%, with 60% and 88% of ruptured and unruptured IAs being correctly identified, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.