Abstract
Guideline-based clinical decision support systems (CDSSs) are expected to improve the quality of care by providing best evidence-based recommendations. However, because clinical practice guidelines (CPGs) may be incomplete and often lag behind the publication time of very last scientific results, CDSSs may not provide up-to-date treatments. It happens that clinical decisions made for specific patients do not comply with CDSS recommendations, whereas they comply with the state of the art. They may also be non-compliant because they rely on some implicit knowledge not covered by CPGs. We propose to capitalize the clinical know-how built from such non-compliant decisions and allow physicians to use it in future similar cases by the development of a decisional event structure that allows the modelling, storage, processing, and reuse of all the information related to a decision-making process. This structure allows the analysis of non-compliant decisions, which generates new experience-based rules. These new rules augment the knowledge embedded in CPGs supporting clinician decision for specific patients poorly covered by CPGs. This work is applied to the management of breast cancer within the EU Horizon 2020 project DESIREE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.