Abstract
Wet delay in Global Navigation Satellite System (GNSS), mainly caused by water vapor in the atmosphere, is difficult to be accurately modeled using empirical wet delay models as water vapor is highly variable in both space and time. In this paper we propose correcting the GNSS wet delay using water vapor data from Weather Research and Forecasting (WRF) model’s assimilation results. We conduct six consecutive 24-h WRF forecasts to model the three-dimension (3D) distribution of water vapor in the South China region 20° N–33° N and 108° E–123° E from 0 h UTC April 06, 2020 to 0 h UTC April 11, 2020. GNSS Precipitable Water Vapor (PWV) from 27 stations of the Crustal Movement Observation Network of China (CMONOC) and meteorological profiles from 22 radiosonde stations are assimilated into WRF model to improve the water vapor modeling performance of WRF. Totally, four WRF schemes are adopted, i.e. WRF scheme 0: WRF without water vapor data assimilation; WRF scheme 1: WRF with GNSS PWV assimilation only; WRF scheme 2: WRF with radiosonde profiles assimilation only; WRF scheme 3: WRF with both GNSS PWV and radiosonde profiles assimilation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.