Abstract

The advent of direct-ink-writing 3D printing in food processing highlights potential for innovation but underscores challenges with food-grade inks, notably their inadequate self-supporting properties post-extrusion that impede maintaining structural integrity and crating complex 3D forms. This challenge is particularly pronounced with starch—a key food ingredient. This study aims to bolster the printability of normal corn starch (NCS) through integration with pregelatinized (PG) high-amylose starch (G50 and G70, with 55% and 68% amylose contents, respectively) and proteins (soy, wheat, pea protein isolates, and whey protein). The PG starch was prepared by disorganizing the high-amylose starches in 33% CaCl2 solution and then precipitating them with ethanol. The formulation featuring an NCS/PG-G70/soy protein isolate ratio of 5:5:3 emerged superior, yielding enhanced formability, precise line printing, and robust self-support. This adapted starch-based gel facilitated the 3D printing of sophisticated structures, such as hollow and overhanging architectural forms, without necessitating chemical modification or a support bath. In vitro enzymatic hydrolysis tests on the printed constructs manifested approximately 50% resistant starch and 15% slowly digestible starch. These results suggest that the composite biopolymer ink developed in this study showcases not only superior printability but also boasts improved digestion-resistance. Thus, the findings from this research provide a foundation for developing food-grade inks capable of crafting customizable, intricately structured food products while conferring health advantages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.