Abstract

BackgroundIncreasing evidence suggests that use of augmented visual feedback could be a useful approach to stroke rehabilitation. In current clinical practice, visual feedback of movement performance is often limited to the use of mirrors or video. However, neither approach is optimal since cognitive and self-image issues can distract or distress patients and their movement can be obscured by clothing or limited viewpoints. Three-dimensional motion capture has the potential to provide accurate kinematic data required for objective assessment and feedback in the clinical environment. However, such data are currently presented in numerical or graphical format, which is often impractical in a clinical setting. Our hypothesis is that presenting this kinematic data using bespoke visualisation software, which is tailored for gait rehabilitation after stroke, will provide a means whereby feedback of movement performance can be communicated in a more meaningful way to patients. This will result in increased patient understanding of their rehabilitation and will enable progress to be tracked in a more accessible way.MethodsThe hypothesis will be assessed using an exploratory (phase II) randomised controlled trial. Stroke survivors eligible for this trial will be in the subacute stage of stroke and have impaired walking ability (Functional Ambulation Classification of 1 or more). Participants (n = 45) will be randomised into three groups to compare the use of the visualisation software during overground physical therapy gait training against an intensity-matched and attention-matched placebo group and a usual care control group. The primary outcome measure will be walking speed. Secondary measures will be Functional Ambulation Category, Timed Up and Go, Rivermead Visual Gait Assessment, Stroke Impact Scale-16 and spatiotemporal parameters associated with walking. Additional qualitative measures will be used to assess the participant’s experience of the visual feedback provided in the study.DiscussionResults from the trial will explore whether the early provision of visual feedback of biomechanical movement performance during gait rehabilitation demonstrates improved mobility outcomes after stroke and increased patient understanding of their rehabilitation.Trial registrationCurrent Controlled Trials ISRCTN79005974

Highlights

  • Increasing evidence suggests that use of augmented visual feedback could be a useful approach to stroke rehabilitation

  • Regaining walking function is a priority for stroke survivors since this widely influences their status of independence and quality of life [5]

  • Many of these applications are based on motivational games that encourage patients to move through repetitive movements. These games may give a representation of the movement abilities of a patient, they tend not to show how patients move in context; that is, how limb segments move in relation to each other. This project aims to use a virtual reality platform to show stroke patients how they move during gait re-education, whilst removing distractions associated with mirrors or video feedback

Read more

Summary

Introduction

Increasing evidence suggests that use of augmented visual feedback could be a useful approach to stroke rehabilitation. Our hypothesis is that presenting this kinematic data using bespoke visualisation software, which is tailored for gait rehabilitation after stroke, will provide a means whereby feedback of movement performance can be communicated in a more meaningful way to patients. This will result in increased patient understanding of their rehabilitation and will enable progress to be tracked in a more accessible way. Overground gait training is a physical therapy intervention in which a physiotherapist will observe, cue and facilitate a patient’s walking pattern It is commonly supplemented by practising walking and exercises purposely aimed at improving gait performance [4]. Patients are often unaware of their compensatory movements, and physiotherapists will aim to discourage these at an early stage by encouraging awareness of the position and orientation of their limb segments

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.