Abstract

Displaying anatomical and physiological information derived from preoperative medical images in the operating room is critical in image-guided neurosurgery. This paper presents a new approach referred to as augmented virtuality (AV) for displaying intraoperative views of the operative field over three-dimensional (3-D) multimodal preoperative images onto an external screen during surgery. A calibrated stereovision system was set up between the surgical microscope and the binocular tubes. Three-dimensional surface meshes of the operative field were then generated using stereopsis. These reconstructed 3-D surface meshes were directly displayed without any additional geometrical transform over preoperative images of the patient in the physical space. Performance evaluation was achieved using a physical skull phantom. Accuracy of the reconstruction method itself was shown to be within 1 mm (median: 0.76 mm +/- 0.27), whereas accuracy of the overall approach was shown to be within 3 mm (median: 2.29 mm +/- 0.59), including the image-to-physical space registration error. We report the results of six surgical cases where AV was used in conjunction with augmented reality. AV not only enabled vision beyond the cortical surface but also gave an overview of the surgical area. This approach facilitated understanding of the spatial relationship between the operative field and the preoperative multimodal 3-D images of the patient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.