Abstract

Gold nanoparticles with various functionalities have served as potential tools in nanotechnology for tumor ablation. In this work, we seek to design and develop gold nanoparticle with poly(ethylene glycol)-containing dopamine (hereafter termed as AuND), and to synthesize the AuND with one-sided Tat peptide expression (OT@AuND). We demonstrate the tumor cell-targeting ability on the basis of anti-nonspecific cell binding of OT@AuND and determine how the chemically modified gold nanoparticle–based product affects photothermal tumor therapy in vitro and in vivo. The OT@AuND with a particular cellular entry orientation–induced delayed endocytosis, which is advantageous for enhanced permeability and retention effect-based tumor accumulation. This is because the slower cellular interaction of OT@AuND allows it to have the time to be transported to and bind to the tumor site. In tumor cell lines, OT@AuND showed a lower cellular uptake than gold nanoparticles with full-sided Tat peptide expression (FT@AuND) in the early period (after its in vitro and in vivo administration), but the cellular internalization rate of OT@AuND caught up with that of FT@AuND in the late period. Importantly, the delayed cellular internalization feature of OT@AuND resulted in efficient tumor accumulation in tumor-bearing mice, because the time interval provided OT@AuND more chances not to bind to any cells, but to enter tumor cells, leading to selective photothermal tumor ablation. These data suggest that gold nanoparticles with a particular cellular entry orientation can be further explored as a potential photothermal therapeutic agent and as a strategy to treat tumors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call