Abstract

Psoriasis is a recurrent, life-threatening anti-inflammatory condition that affects nearly 1-3% of the global population. It is an autoimmune illness distinguished by hyperplasia of skin cells or fast skin cell development, resulting in abnormally irritating scales and skin patches. Curcumin, as a selective phosphorylase kinase inhibitor, actively suppresses inflammation and keratinocyte proliferation in psoriasis. However, limited solubility in water and poor skin permeability poses a significant hurdle in curcumin's topical effectiveness in psoriasis. The present study focuses on enhancing the solubility and skin permeability of curcumin for better transdermal application. Curcumin-loaded invasomes were formulated, and a factorial design was applied to study the effect of the type of terpenes and their concentrations on the properties of prepared invasomes. A topical gel was formulated using the optimised invasomal formulation which was further evaluated for anti-psoriatic potential in BALB/c mice. The optimised formulation showed 85.84 ± 0.56% entrapment efficiency and a vesicle size of 302.33 ± 1.53 nm. The invasomal gel of the optimised formulation showed a permeation flux of 3 times greater than the plain gel. In vivo studies demonstrated that the invasomal gel of curcumin promoted faster and earlier recovery in psoriatic mice than conventional curcumin gel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call