Abstract

abstractStable surfactant-free Al2O3/deionized (DI) water nanofluids are prepared by a two-step process and are stabilized using an ultrasonic homogenizer. The thermal conductivity enhancement measured by a transient hot wire technique demonstrated a nonlinear relationship with increase in volume fraction of dispersed nanoparticles and attains a maximum enhancement of 15% for 1 vol% of Al2O3 loading in deionized water at 70°C. The stabilized Al2O3/DI water nanofluids were employed as the working fluid in a screen mesh wick heat pipe placed horizontally. The straight heat pipe configuration is altered for more practicality in use, with crimped edges, extended conduction lengths, and minute surface depressions. The heat pipe is tested at various levels of heat inputs and concentrations of Al2O3 nanoparticles. The evaporator section is heated by circulating water through a heating chamber, and the condenser section is cooled under free convection. The experimental results show an optimum reduction of 22% in the thermal resistance value using 1 vol% of Al2O3/DI nanofluids as compared to DI water at low heat input of 12 W. The stabilized operation of the heat pipe is observed at high heat input of 73 W and at low concentration of 0.005 vol% Al2O3/DI water nanofluids. The findings emphasize potential for nanofluids as future heat pipe fluids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call