Abstract

BackgroundThe current intraoperative pulmonary nodule localization techniques require specific medical equipment or skillful operators, which limits their widespread application. Here, we present an innovative nodule localization technique in a canine lung model using augmented reality (AR) navigation.MethodsPeripheral pulmonary lesions were artificially created in canine model. A preoperative chest computed tomography scan was performed for each animal. The acquired computed tomography images were analyzed, and an established intraoperative localization plan was uploaded into HoloLens (a head-mounted AR device). Under general anesthesia, lung localization markers were implanted in each canine, guided by the established procedure plan displayed by HoloLens. All artificial lesions and markers were removed by video-assisted wedge resection or lobectomy in a single operation.ResultsSince June 2019, 12 peripheral pulmonary lesions were artificially created in 4 canine models. All lung localization markers were precisely implanted with a median registration and implantation time of 6 minutes (range, 2–15 minutes). The average distance between pulmonary lesions and markers was 1.9±1.7 mm, based on computed tomography examination after localization. No severe pneumothorax was observed after marker implantation. After an average implantation period of 16.5 days, no marker displacement was observed.ConclusionsThe AR navigation-guided pulmonary nodule localization technique was safe and effective in a canine model. The validity and feasibility of using this technology in patients will be examined further (NCT04211051).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.