Abstract

Introduction Needle tip visualisation is a key skill required for the safe practice of ultrasound-guided regional anaesthesia (UGRA). This exploratory study assesses the utility of a novel augmented reality device, NeedleTrainer™, to differentiate between anaesthetists with varying levels of UGRA experience in a simulated environment. Methods Four groups of five participants were recruited (n = 20): novice, early career, experienced anaesthetists, and UGRA experts. Each participant performed three simulated UGRA blocks using NeedleTrainer™ on healthy volunteers (n = 60). The primary aim was to determine whether there was a difference in needle tip visibility, as calculated by the device, between groups of anaesthetists with differing levels of UGRA experience. Secondary aims included the assessment of simulated block conduct by an expert assessor and subjective participant self-assessment. Results The percentage of time the simulated needle tip was maintained in view was higher in the UGRA expert group (57.1%) versus the other three groups (novice 41.8%, early career 44.5%, and experienced anaesthetists 43.6%), but did not reach statistical significance (p = 0.05). An expert assessor was able to differentiate between participants of different UGRA experiencewhen assessing needle tip visibility (novice 3.3 out of 10, early career 5.1, experienced anaesthetists 5.9, UGRA expert group 8.7; p < 0.01) and final needle tip placement (novice 4.2 out of 10, early career 5.6, experienced anaesthetists 6.8, UGRA expert group 8.9; p < 0.01). Subjective self-assessment by participants did not differentiate UGRA experience when assessing needle tip visibility (p = 0.07) or final needle tip placement (p = 0.07). Discussion An expert assessor was able to differentiate between participants with different levels of UGRA experience in this simulated environment. Objective NeedleTrainer™ andsubjective participantassessmentsdid not reach statistical significance. The findings are novel as simulated needling using live human subjects has not been assessed before, and no previous studies have attempted to objectively quantify needle tip visibility during simulated UGRA techniques. Future research should include larger sample sizes to further assess the potential use of such technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call