Abstract

Snapshot recording of transient dynamics in three dimensions (3-D) is highly demanded in both fundamental and applied sciences. Yet it remains challenging for conventional high-speed cameras to address this need due to limited electronic bandwidth and reliance on mechanical scanning. The emergence of light field tomography (LIFT) provides a new solution to these long-standing problems and enables 3-D imaging at an unprecedented frame rate. However, based on sparse-view computed tomography, LIFT can accommodate only a limited number of projections, degrading the resolution in the reconstructed image. To alleviate this problem, we herein present a spectral encoding scheme to significantly increase the number of allowable projections in LIFT while maintaining its snapshot advantage. The resultant system can record 3-D dynamics at a kilohertz volumetric frame rate. Moreover, by using a multichannel compressed sensing algorithm, we improve the image quality with an enhanced spatial resolution and suppressed aliasing artifacts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call