Abstract
MRI has recently been identified as a promising application for compressed-sensing-like regularization because of its potential to speed up the acquisition while maintaining the image quality. Thereby non-uniform k-space trajectories, such as random or spiral trajectories, are becoming more and more important, because they are well suited to be used within the compressed-sensing (CS) acquisition framework. In this paper, we propose a new reconstruction technique for non-uniformly sub-Nyquist sampled k-space data. Several parts make up this technique, such as the non-uniform Fourier transform (NUFT), the discrete shearlet transform and a augmented Lagrangian based optimization algorithm. Because MRI images are real-valued, we introduce a new imaginary value suppressing prior, which attenuates imaginary components of MRI images during reconstruction, resulting in a better overall image quality. Further, a preconditioning based on the Voronoi cell size of each NUFT data point speeds up the conjugate gradient optimization used as part of the optimization algorithm. The resulting algorithm converges in a relatively small number of iterations and guarantees solutions that fully comply to the imposed constraints. The results show that the algorithm is applicable not only to sub-Nyquist sampled k-space reconstruction, but also to MR image fusion and/or resolution enhancement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.